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Discriminative vs. Generative Models
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Deep Learning

Learn hierarchical model of data
Higher-level features derived from lower-level features

Has achieved much success in discriminative tasks
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Generating an Image

Opposite of convolutional neural nets

How to train it?

100z _ = ||
Code Project and Stride 2 3 | Stide2
reshape Deconv 1

16

Deconv 2
Deconv 3
Deconv 4

Image



Deep Generative Models

Va ri at i O n a | Auto e n CO d e rS 1 - generated distribution true data distribution

unit gaussian _—"

Generative Adversarial

generative

Networks? () || mode

(neural net)

image space k! image space

1. Kingma, Diederik P and Welling, Max. Auto-Encoding Variational Bayes. In The 2nd International
Conference on Learning Representations (ICLR), 2013.

2. 1. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y.
Bengio. Generative adversarial nets. In NIPS, pages 2672—-2680. 2014.



Generative Adversarial Networks?

Two networks compete with one another
The generator generates imitations of data

The discriminator distinguishes generated
data from real data

Backwards-differentiable(!)
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Generative Adversarial Networks?
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Results

Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with deep
convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434, 2015.
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Results

this small bird has a pink this magnificent fellow is
breast and crown, and black almost all black with a red
primaries and secondaries. crest, and white cheek patc
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the flower has petals that this white and yellow flowe
are bright pinkish purple have thin white petals and a
with white stigma round yellow stamen
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S. Reed, Z. Akata, X. Yan, L. Logeswaran, B. Schiele, and H. Lee. Generative adversarial text-to-image
synthesis. In ICML, 2016b.



Further Research

Disentangled representations
Different architectures
Combining GANs with other models

Finding minima in non-convex games
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